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INTRODUCTION 
Several studies have indicated that air quality inside road vehicles can be poorer than 
ambient or nearby air quality. What may still be the most comprehensive study examined 
air quality inside automobiles and school buses in California in 1997,1‡ for the California 
Air Resources Board (CARB). The following is from the abstract of the study report. 

In general, VOC and CO levels inside or just outside the vehicles were higher than 
those measured at the roadside stations or the ambient air stations. However, in-vehicle 
levels of PM2.5 were consistently lower than PM2.5 levels just outside the vehicles and. 
in many cases, also lower than roadside levels. Nonetheless, PM2.5 levels inside or just 
outside the vehicles were usually higher than levels measured at the nearest ambient 
site. … Pollutant levels measured inside vehicles traveling in a carpool lane were sig-
nificantly lower than those in the right-hand, slower lanes. Under the study conditions, 
factors such as vehicle type and ventilation settings were shown to have little effect on 
the in-vehicle pollutant levels. Other factors, such as roadway type, freeway conges-
tion level, and time-of-day were shown to have some influence on the in-vehicle pol-
lutant levels. Elevated levels of both fine particles and black carbon were measured in-
side the test vehicle when it followed diesel-powered vehicles. 

                                                      
†  Enquiries about or comments on this report should be addressed to Richard Gilbert at  

                                            .  
Enquiries about The Centre for Sustainable Transportation should be addressed to Al Cormier at  
transport@cstctd.org. 

‡  Superscript numbers refer to reference and other notes on Page7-9. 
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A more recent study for CARB focused on children’s exposure within school buses.2 It 
concluded the following: 

Measurements indicated that for some buses, significantly higher exposures of vehicle-
related pollutants occurred during the bus commutes than roadway pollutant concen-
trations alone would indicate. The high commute concentrations were a function of 
several influences: 

• the high concentrations of pollutants already present on roadways, especially if 
traffic was heavy;  

• the direct influence of other vehicles being followed; and  

• the contribution of the bus’s own emissions. The extent of a bus’s own contribu-
tion to these high concentrations appeared to be highest when windows were 
closed for the older diesel buses, but bus-to-bus variability was high.  

 
Another study of air quality within school buses concluded the following:3 

The results were startling: A child riding inside of a diesel school bus may be exposed 
to as much as four times the level of toxic diesel exhaust as someone standing or rid-
ing beside it. Under federal law, these exposures translate into a significant risk of 
cancer to children. In fact, these exposures pose from 23 to 46 times the cancer risk 
level considered significant under federal law. 

 
Yet another study of school buses reached this conclusion:4 

Fine particulate concentrations (PM2.5) measured on buses in this study were often 5-
10 times higher than average levels measured at the 13 fixed-site PM2.5 monitoring sta-
tions in Connecticut. Levels of fine particles were often higher under certain circum-
stances: when buses were idling with windows opened, when buses ran through their 
routes with windows closed, when buses moved through intense traffic, and especially 
when buses were queued to load or unload students while idling. 

 
Several studies have examined air quality inside regular urban buses. An Australian study 
examined in-vehicle exposure of commuters by bus, train, and car, and also exposure of 
commuting walkers and cyclists to nitrogen dioxide (NO2) and volatile organic com-
pounds (VOCs).5 Commuting by bus resulted in the highest exposures to NO2. Commut-
ing by car resulted in the highest exposures to VOCs. Commuting by train resulted in the 
lowest exposures. Commuting by walking or bicycling generally resulted in intermediate 
levels of exposure: higher than by train but lower than by car or bus. 
 
A study comparing exposure to carbon monoxide (CO) in public transit modes in Hong 
Kong found that CO levels in minibuses and taxis were respectively about 60 per cent 
and 80 per cent above levels in regular buses.6 Levels were low compared with those 
reported for other cities. This and a subsequent study7 showed a high correlation between 
in-vehicle concentrations of CO and those immediately outside the vehicles. 
 
Work in Mexico City compared concentrations in minibuses, buses, and heavy-rail vehi-
cles (subway trains) of particulate matter of diameter equal to or less than 2.5 microns 
(PM2.5), CO, and benzene.8 In general, the highest concentrations were found in mini-
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buses and the lowest in buses; the results for subway trains were more similar to those for 
buses than those for minibuses. The highest readings in all vehicles occurred when wind 
speeds were low. 
 
A study of VOC concentrations inside and just outside transit buses in Detroit, Michigan, 
showed levels were similar in both kinds of location.9 Both were much above ambient 
levels, leading to the authors’ conclusion that vehicle-related sources of VOCs dominated 
VOC exposure, not the many industrial sources in Detroit. 
 
Work for Environment Canada measured levels of VOCs, PM2.5, and other pollutants in 
Ottawa buses and at the roadside.10 According to the authors, in-vehicle concentrations 
were generally higher than roadside levels. 
 
Work in Manchester, UK, found high and extremely variable levels of respirable particles 
(PM4.0) inside buses travelling in an urban area, an average of more than ten times back-
ground levels. Cyclists on the same route had exposures averaging twice background 
levels.11 
 
Another UK study, conducted in London, found that mean personal exposure levels to 
respirable particulates (PM2.5) in road transport modes—bus, car, and bicycle—were 
approximately double that of concentration at an urban background fixed site monitor.12 
Exposure in underground trains was several times higher. 
 
Work in Munich, Germany, found that particulate levels (PM10) in buses and streetcars 
were 1.7-4.0 times higher than those at static outdoor stations, with only minor associa-
tions between particulate concentrations and traffic density and time of day.13 
 
There has been less work on air quality inside cars. A UK study compared personal expo-
sures to particulates during walking and in-car suburban journeys in winter.14 Exposures 
were highly correlated between the two transport modes, with PM10 but not PM2.5 or PM1 
being higher inside the car than for the walker, and both being higher than at a fixed-side 
curbside monitor. 
 
One of the few studies of air quality in vehicles while travelling outside urban areas 
found lower PM2.5 levels inside highway patrolling police cruisers than were recorded as 
ambient and roadside concentrations, although in-vehicle levels of CO, NO2, aldehydes, 
hydrocarbons, and some metals were higher.15 Nevertheless, cardiovascular effects were 
more strongly associated with in-vehicle PM2.5 levels than with ambient and roadside 
levels. 
 
A review conducted for the International Center for Technology Assessment (Washington DC) 
concluded the following:16 

Most people realize that there are risks associated with traveling by automobile—
drunk drivers, road rage, and speeding tickets come to mind. The greatest concern of 
drivers stuck in traffic is most likely that they won’t get to their destinations on time. 
Few people, however, are concerned about the health effects of the air quality inside of 
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their cars. If their thoughts turn to the subject at all, they are more likely to consider air 
pollution an ‘outdoor’ problem.  

This unprecedented survey of international studies shows that air pollution may be 
even more severe inside of cars than out. The results of 23 separate scientific studies 
conducted during the 1980s and 1990s reveal that in-car air pollution levels frequently 
reach concentrations that may threaten human health. The reports show that the air in-
side of cars typically contains more carbon monoxide, benzene, toluene, fine particu-
late matter, and nitrogen oxides than ambient air at nearby monitoring stations used to 
calculate government air-quality statistics. In-car pollution is often even worse than 
pollution in the air at the side of the road. 

 
Taken together, the foregoing suggests that although concentrations in car and minibuses 
may be higher, concentrations of vehicle-related pollutants in city buses—although not 
necessarily inter-city buses—may be sufficiently elevated to pose concerns in respect of 
vehicle occupants including operators.  
 
The work reported here was undertaken to serve two purposes. The first was to allow 
development and refinement of methods for assessing air quality within road vehicles. 
The second was to conduct a preliminary investigation of levels of some pollutants in 
inter-city buses to determine whether fuller investigation would be warranted.  
 
The Centre’s concern about in-vehicle air quality is part of its concern about all adverse 
impacts of transportation. A sustainable transportation system, according to the Centre’s 
definition, is one that allows the basic access needs of individuals to be met in a manner 
consistent with human health.17 If the air within a transportation system’s vehicles is 
hazardous, then the system is not sustainable.  
 
Assessment of in-vehicle exposure to atmospheric pollutants is beyond the resources of 
the Centre for Sustainable Transportation (CST). For this work, CST collaborated with 
the Gage Occupational and Environmental Health Unit at the University of Toronto, spe-
cifically with Professor James Purdham and his staff. He kindly agreed to undertake the 
work reported here as an additional feature of ongoing work on occupational exposure to 
ultrafine particles and its relationship to heart and lung disease. For logistical reasons, his 
procedures had been restricted to measurement of personal exposure in non-mobile set-
ting. They were adapted to provide for limited assessment of in-vehicle concentrations of 
carbon monoxide (CO), nitrogen dioxide (NO2), inhalable particles (PM10) and respirable 
particles (PM2.5).18 This required the application of well-tried measuring equipment and 
procedures to new, more challenging situations. 
 
In brief, students carried monitoring equipment on 28 inter-city trips made by Greyhound 
Canada buses during July and August 2004. The equipment recorded average levels of 
CO and NO2, and also concentrations of particulate matter (PM10 or PM2.5, or both).  
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PROCEDURES 
Bus routes were selected that allowed for about 10 hours of total sampling time in a day. 
Either two trips of roughly five hours each or four trips of 2-2½ hours were undertaken. 
All routes involved express buses that for the most part ran along Ontario’s 400 series of 
divided highways with four or more lanes. Outbound routes began at the Toronto Bus 
Terminal located in the city’s downtown. All the equipment detailed below was in or on 
standard-sized backpacks held on the laps of the students who carried out the sampling. It 
was not possible to control the location of the students on the bus; they sat wherever seats 
were available. Data on the pumps used, the run times, and the routes taken were re-
corded by the students. 
 
Carbon monoxide: CO was measured using Langan Model T15 logging CO monitors, 
reset the night before each day’s trips. The monitors were calibrated using a Thermo 
Electron Gas Filter Correlation analyzer Model 48. The data were downloaded and re-
corded after each set of trips. The CO monitors were carried in the mesh portion of the 
backpack’s outer pocket. 
 
Nitrogen dioxide: NO2 was measured using Gastec #9DL passive dosi-tubes that showed 
a colour change proportional to NO2 concentration over time. The colour change was due 
to the reaction of NO2 with 2,2-Azinobis (3-ethylbenzothialine-6-sulfonic acid). There 
are no known interferents listed by Gastec in the product literature. The tubes were 
opened at the start of the day, and were sealed at the end of the sampling period to pre-
vent further diffusion. The tubes were then read the next morning. 
 
Particulate matter: PM2.5 or PM10 were measured using Harvard Personal Sampler 
grease-filled impactors running at four litres per minute. The pumps used were BGI400S 
24-hour sampling pumps with nickel metal hydride batteries. The pumps were turned on 
before each trip, roughly 10 minutes before the scheduled bus departure time. Pumps 
were turned off in between trips and were turned on again roughly 10 minutes before the 
bus was scheduled to depart. Filters for the Harvard Samplers were weighed before and 
after sampling. Filters contained in the Harvard Samplers were conditioned for 24 hours 
before each weighing in a temperature and humidity controlled chamber. Weighing was 
conducted using a Perkin-Elmer AD-6 Microbalance with Po-210 anti-static radioactive 
sources. The grease pots were refilled after each day for the PM2.5 sampling heads and 
after every second day’s sampling for the PM10 sampling heads. This was because con-
siderably less particulate matter was deposited on the PM10 impactor plates.  
 
 
RESULTS 
The results of the measurements are set out in Table 1, together with an indication of 
relevant standards.19 
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Table 1 Summary of results of the measurement of in-bus levels of indicated pollutants, 
together with acceptable levels (as explained in Note 20) 

Particulate matter  
(micrograms per cubic metre) 

 
Carbon monoxide 
(parts per million)

Nitrogen dioxide 
(parts per billion) PM10 PM2.5 

Lowest value 0.6 25 11 5 

Geometric mean 0.9 60 33 16 

Highest value 1.2 168 159 47 

Acceptable level20 13.0 106 50 30 

 
 
In brief, levels of carbon monoxide in the buses were much lower than (better than) the 
national standard of an ‘acceptable’ level for CO. Levels of nitrogen dioxide were on 
average lower than the acceptable level of this pollutant, but five of the 19 values ex-
ceeded the acceptable level (i.e., not including the discarded extreme values). There are 
presently no national standards for PM10, and PM2.5, although there are recommended 
levels and a formal standard for PM2.5 is emerging. The derivation of the ‘acceptable’ 
levels for PM10 and PM2.5 is discussed in Note 20. As in the case of nitrogen dioxide, the 
average particulate levels recorded in the buses can be considered acceptable. However, 
in each case two values (out of 19 for PM10 and 14 for PM2.5) exceeded what might be 
considered to be the respective acceptable levels.  
 
 
INITIAL CONCLUSIONS 
These results are consistent with the findings reported in the introductory section above. 
They provide no justification for further work on in-vehicle carbon monoxide levels in 
inter-city buses. They do suggest that further work on in-vehicle levels of nitrogen diox-
ide and particulate matter could be warranted. It should be stressed that the results are 
based on too few assessments21 to allow a conclusion that there are problems with expo-
sure to these pollutants in inter-city buses.  
 
Several procedural and equipment problems were encountered (see Note 21), all of which 
were remedied. As thus refined, the methods used appear robust and valid, and suitable 
for further work on in-vehicle concentrations of these pollutants.  
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