Why we need electric mobility

Richard Gilbert

Presentation at the
Annual General Meeting of
Electric Mobility Canada
Toronto
November 9, 2006

Enquiries to Richard Gilbert at mail@richardgilbert.ca or 416 923 8839
Why we need electric mobility

1. Oil products have been the ideal transport fuels: energy-dense, portable, readily available, inexpensive, relatively safe.

2. Oil products can only fuel internal combustion engines (ICEs), which are inefficient and polluting but tolerated because oil is so good.

3. Electric traction is much better: efficient, quiet, strong, and clean (unless coal-fired generation).

4. But, fuel systems for electric traction are inadequate: either low energy density and/or expensive at vehicle (batteries, fuel cells), or inflexible and expensive infrastructure (grid-connected).
Why we need electric mobility

5. Soon (~5 years) oil supply will likely not keep up with potential demand; prices will rise steeply forcing reduced use of oil and thus ICEs.

6. If oil supply does keep up with demand, concerns about climate change could force reduced use of oil and thus ICEs.

7. Biofuels for ICEs, especially biodiesel, can help a little, but land issues will limit scope (displacement of food production, soil degradation).

8. Without readily available liquid fuels, the intrinsic superiority of electric traction will become more evident, especially if there is strong interest in the use of renewable energy sources.
Here’s the nub of the oil problem: discoveries are not keeping up with consumption

Here’s the best estimate of when the **world peak in liquid hydrocarbon production** will occur: about 2012 (black area is oil sands)

Source: Uppsala Hydrocarbon Depletion Group
It’s not a secret! The National Geographic cover of June 2004 echoed the title of a 1998 *Scientific American* article by geologists Colin Campbell and Jean Laherrère that was initially dismissed as yet another oil scare but is now seen as a seminal step in our understanding of the future availability of oil (and natural gas).
Even the US Army Corps of Engineers is concerned about peak oil

“Peak oil is at hand … Once worldwide petroleum production peaks, geopolitics and market economics will result in even more significant price increases and security risks. … Oil wars are certainly not out of the question. Disruption of world oil markets may also affect world natural gas markets as much of the natural gas reserves are collocated with the oil reserves.”
Balance of oil production and consumption after 2012 (30% mismatch by 2020)
Small shortfalls can mean big price increases (two analyses)

1. Based on analysis for the U.S. by the Brookings Institution

<table>
<thead>
<tr>
<th>Shortfall in crude oil supply</th>
<th>0%</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resulting increase in crude oil price</td>
<td>0%</td>
<td>30%</td>
<td>200%</td>
<td>550%</td>
</tr>
<tr>
<td>Crude oil price per barrel (US$)</td>
<td>$50</td>
<td>$65</td>
<td>$150</td>
<td>$320</td>
</tr>
<tr>
<td>Resulting gasoline pump price (Can$/litre)</td>
<td>$0.85</td>
<td>$1.00</td>
<td>$1.50</td>
<td>$2.50</td>
</tr>
</tbody>
</table>

2. The U.S. National Commission on Energy Policy concluded in June 2005 that a “4 percent global shortfall in daily supply results in a 177 percent increase in the price of oil” (from $58 to $161 per barrel).
Why biofuels may not fill the liquid transport fuels gap

1. Ethanol and biodiesel may have some role as substitutes for present transport fuels.

2. Ethanol production raises questions about required energy inputs and land requirements. E.g., the new Goldfield plant in Iowa uses about 100,000 tonnes of coal [!] a year to produce about 200 million litres of ethanol from about 600,000 tonnes of corn—harvested from about 1,000 square kilometres of land. The energy in the coal is about 60% of the energy in the ethanol, and more energy is required for farming and transporting the corn.

3. There are fewer questions with production of ethanol from cellulose rather than sugar (Iogen is a world leader), allowing use of wood, corn and other wastes.

4. But still the land requirement question remains, and a new question: in an energy-constrained world, in which fertilizer production is a major challenge (oil and natural gas are major feedstocks), will not waste materials be needed to replenish land?

5. It will usually make more sense to use biofuels to cogenerate electricity.
Comparable ICE, hybrid, fuel cell, and battery vehicles
(Honda Civic DX, Honda Civic Hybrid, Honda FCX, Mitsubishi Lancer Evolution MIEV)

Sources: US EPA (2006); Honda (2006); Mitsubishi (2006); Bossel (2005)
Electric cars are coming

Mitsubishi Lancer Evolution MIEV:

- Length: 4490 mm
- Width: 1770 mm
- Curb weight: 1590 kg
- Seating: 5
- Max. Power: 4 x 50 = 200 kW
- Max. speed: 180 km/h
- Range/charge: 250 km
- Lithium-ion: 90Ah at 14.8 V
- No. of batteries: 24
- Max. energy stored: 32 kWh
- Gasoline equivalent: 3 Liters
- Fuel economy: 1.2 L/100 km

Source: Mitsubishi Corporate press release, August 24, 2005
Prevalence of Electric Mobility 1

• Nearly all vehicles with on-board generation are hybrids (ICE-electric).

• Most battery vehicles are now off-road (although this may be about to change).

• Today, almost all electric mobility involves grid-connected vehicles.
Prevalence of Electric Mobility 2

- In 1900, electric automobiles were as popular as ICE automobiles.

- In Europe and Japan, most rail systems are electrified.

- In Canada, five of the six largest cities provide electric transit, responsible for almost half of the trips in those cities.
Prevalence of Electric Mobility 3

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Transit vehicle</th>
<th>Annual trips (millions)</th>
<th>Annual PKM* (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Toronto</td>
<td>All vehicles</td>
<td>418.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subway and SRT**</td>
<td>173.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streetcars</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric share (%)</td>
<td>52%</td>
<td></td>
</tr>
<tr>
<td>Greater Montreal</td>
<td>All</td>
<td>437.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric train</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subway</td>
<td>217.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric share (%)</td>
<td>51%</td>
<td></td>
</tr>
<tr>
<td>Greater Vancouver Regional District</td>
<td>All</td>
<td>155.6</td>
<td>1,851.6</td>
</tr>
<tr>
<td></td>
<td>Skytrain</td>
<td>36.6</td>
<td>435.6</td>
</tr>
<tr>
<td></td>
<td>Trolley buses</td>
<td>39.2</td>
<td>466.0</td>
</tr>
<tr>
<td></td>
<td>Electric share (%)</td>
<td>49%</td>
<td>49%</td>
</tr>
<tr>
<td>City of Calgary</td>
<td>All</td>
<td>80.6</td>
<td>1,024</td>
</tr>
<tr>
<td></td>
<td>Light rail</td>
<td>34.7</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Electric share (%)</td>
<td>43%</td>
<td>43%</td>
</tr>
<tr>
<td>City of Edmonton</td>
<td>All</td>
<td>84.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light rail</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trolley buses</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric share (%)</td>
<td>22%</td>
<td></td>
</tr>
</tbody>
</table>
Final points

1. The remarkable efficiencies of grid-connected systems will be especially advantageous in an energy-constrained world.

2. A large variety of generating sources can be used, including renewable sources, without changing anything at the vehicle.

3. Much more electric-mobility research and development are required, especially on battery systems and on light-vehicle, grid-connected systems (personal rapid transport).

4. Canada can be an electric mobility powerhouse. We have renewable electric in every region and the prospect of much more, and we will soon have much unused vehicle manufacturing capacity.

5. Electric Mobility Canada will help make it happen.